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Abstract. Knowledge of tissue blood flow (BF) changes after free tissue transfer may enable surgeons to predict
the failure of flap thrombosis at an early stage. This study used our recently developed noncontact diffuse cor-
relation spectroscopy to monitor dynamic BF changes in free flaps without getting in contact with the targeted
tissue. Eight free flaps were elevated in patients with head and neck cancer; one of the flaps failed. Multiple BF
measurements probing the transferred tissue were performed during and post the surgical operation.
Postoperative BF values were normalized to the intraoperative baselines (assigning “1”) for the calculation
of relative BF change (rBF). The rBF changes over the seven successful flaps were 1.89� 0.15,
2.26� 0.13, and 2.43� 0.13 (mean� standard error), respectively, on postoperative days 2, 4, and 7.
These postoperative values were significantly higher than the intraoperative baseline values (p < 0.001), indi-
cating a gradual recovery of flap vascularity after the tissue transfer. By contrast, rBF changes observed from the
unsuccessful flaps were 1.14 and 1.34, respectively, on postoperative days 2 and 4, indicating less flow recov-
ery. Measurement of BF recovery after flap anastomosis holds the potential to act early to salvage ischemic
flaps. © 2015 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.20.7.075008]
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1 Introduction
Head and neck cancer accounts for 3 to 5% of all cancers in the
United States.1 Despite all the advances in nonsurgical treat-
ments, surgery remains an important tool in the management
of these cancers. Primary or salvage surgeries are extensive
and often lead to major head and neck defects that require com-
plex reconstructions with local flaps, regional flaps, or free tis-
sue transfer flaps.

No widely accepted method of monitoring flap vascularity
has been established. When flap ischemia is a concern, most
surgeons rely primarily on careful and frequent visual examina-
tion of the flap.2,3 Several tools and techniques are currently in
use to monitor flaps in order to detect changes in viability in a
time frame that allows for salvage of the flap from its nonviable
state. While transcutaneous or implantable ultrasound Doppler
technologies are commonly used to assess blood flow through
large axial vessels, peripheral flap blood flow remains largely
subjective in its clinical assessment.4–7 A laser Doppler tech-
nique has also been used to monitor blood flow at a tiny
spot of superficial tissue,8–10 which may not precisely reflect
hemodynamic changes in the bulk flap tissue.

Near-infrared (NIR) diffuse optical technologies for the
quantification of tissue hemodynamics have gained popularity
in recent years owing to the noninvasive, portable, relatively in-
expensive, fast, and continuous nature of the measurement.11–15

More importantly, NIR spectroscopy (NIRS) can probe oxy-
genation changes in deep tissue (millimeters to centimeters
below the tissue surface) owing to the low-tissue absorption

of light in the NIR range (650 to 950 nm). Another emerging
dynamic NIR technique, namely diffuse correlation spectros-
copy (DCS), has recently been more developed for direct meas-
urement of blood flow in the microvasculature of deep tissues.16–
22 DCS utilizes NIR light to penetrate deep tissue and monitors
the speckle fluctuations of the scattered light out of the detected
tissue, which are sensitive to the motions of scatterers in the
tissue (primarily the red blood cells traveling in tissue
microvasculature).

NIRS technology has been previously explored for the mon-
itoring of flap oxygenation,23–25 where contact measurements
were performed using fiber-optic probes placed on tissue surfa-
ces. Potential problems with contact measurements include the
risk for infection and the deformation of vulnerable tissues dis-
torting tissue hemodynamics. We have recently extended the
DCS to a noncontact DCS (ncDCS) technique using optical
lenses to project sources and detectors onto a tissue region of
interest.26,27 This extension enables a fast data acquisition in
the recipient site without touching the target tissues. Our pre-
vious studies show that the noncontact measurement of tissue
blood flow has a high consistency with a contact measurement.26

The aim of this study is to explore the use of ncDCS tech-
nology for noninvasive assessment of blood flow in free flaps
during and after reconstructive surgery of the head and neck.
Our emphasis is on assessing microcirculatory changes that
occur during flap elevation and after vessel anastomosis as
well as at an early postoperative time-period (one week) follow-
ing the elevation of the flap reconstruction.
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2 Methods and Materials

2.1 Noncontact Diffuse Correlation Spectroscopy
System

Our custom-made ncDCS system for the noncontact measure-
ment of tissue blood flow is shown in Fig. 1. A noncontact opti-
cal probe is held by a platform connected to a linear motorized
stage. A multiple axis stand holder provides free movements to
adjust the location and incident angle of the probe. A DCS flow-
metry is controlled by a laptop for continuous monitoring of
tissue blood flow as soon as the noncontact probe is aligned
over the target tissue. The four-channel DCS device consists
of a long-coherence-length (>5 m) NIR laser diode (785 nm,
100 mW, CrystaLaser Inc, California), four single-photon-
counting avalanche photodiodes (APDs, Perkin Elmer,
Canada), and a four-channel correlator (correlator.com, New
Jersey). The ncDCS system is integrated compactly and
portably to ensure convenient operation in both operating and
patient rooms.

Figure 2(a) shows the details of the noncontact probe
structure. The source fiber (WF200/220/245, CeramOptec,
Massachusetts) connected to the long-coherence laser is pro-
jected onto the tissue surface through achromatic lenses
[Fig. 2(b)]. The detector fiber bundle [Fig. 2(a)], including

four single-mode fibers (SM800-5.6-125, Fibercore,
California), are equally arranged in a 7-mm line to cover a
20-mm range through the magnification of lenses. The source
and detector fibers are aligned to focus on the tissue surface.
Photons emitted from the laser are injected through the source
path into the tissue sample. Only a few photons traveling
through the sample can be eventually collected through the
detection path by the linear detector array of four APDs. The
four source-detector (S–D) distances are set as 10.0, 15.7,
22.8, and 30.0 mm [Fig. 2(b)]. According to the diffuse theory,
the photon penetration depth is about half of the S–D dis-
tance.28–30 Thus, for the probe structure described above, corre-
sponding light penetration depths range approximately from 5 to
15 mm. The correlator takes the four APD outputs and calcu-
lates the light intensity autocorrelation functions, which are used
to extract tissue blood flow information. The sampling rate of
DCS measurement is 1 Hz.

Details about DCS theory and data processing have been
described in literature.21,22,26,27,31,32 Briefly, light intensity fluc-
tuation with time detected by APD is associated with the motion
of red blood cells in tissue microvasculature and can be quanti-
fied by the decay of the intensity autocorrelation function cal-
culated by the autocorrelator. From the normalized intensity
autocorrelation function, the electric field temporal autocorrela-
tion function is determined, which satisfies the correlation dif-
fusion equation in highly scattering media.16 By fitting the
electric field autocorrelation curve to an analytical solution of
correlation diffusion equation with a semi-infinite medium
geometry, a blood flow index (BFI) is extracted.30 The relative
change of blood flow (rBF) can be calculated by normalizing the
time-course BFI data to the baseline value taken before physio-
logical changes to be studied.

2.2 Stability Tests for Noncontinuous Flow
Measurements by Noncontact Diffuse
Correlation Spectroscopy

Most previous DCS measurements were based on a continuous
manner, either with contact19,22,32–36 or noncontact26,27 probes, to
quantify blood flow changes without variation of the DCS

Fig. 1 (a) The custom-made noncontact diffuse correlation spectroscopy (ncDCS) system including (1) a
noncontact optical probe, (2) a linear motorized stage, (3) a multiple-axis stand holder, (4) a laptop control
panel, and (5) a DCS flowmetry device and (b) the front view of DCS flowmetry device.

Fig. 2 (a) The mechanical configuration and (b) optical paths of
ncDCS probe. The source and detector fibers are projected through
separated lens paths onto the tissue surface.
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device in long period intervals. In this study, however, we
intended to measure the same flap at different days with the non-
contact probe. In order to investigate ncDCS stability with this
noncontinuous measurement protocol, the ncDCS probe was
first tested on a homogenous liquid phantom placed in an aquar-
ium. The tissue-like liquid phantom comprised Intralipid
(Fresenius Kabi, Sweden), distilled water, and India ink
(Black India, Massachusetts) and has been used extensively
for DCS calibrations.37 Intralipid particles provide control of
scattering (μ 0

s and Brownian motion (flow) while India ink
controls absorption (μa). We set μa ¼ 0.05 cm−1 and
μ 0
s ¼ 7.0 cm−1. We measured the same liquid phantom once

a day over seven days. We also tested the stability of ncDCS
measurements on the forearm of a healthy subject in a similar
manner. For each measurement in a day, flow data were taken
for 2 min from the same location of the phantom/forearm with
the same ncDCS probe. The flow values measured over seven
days were normalized to the first day, representing flow varia-
tions over a week.

2.3 Blood Flow Measurement Protocol of Free
Tissue Transfer

Seven patients with head and neck cancer undergoing free tissue
transfer participated in this study as part of their oncologic extir-
pation and reconstruction procedure at the University of
Kentucky hospital. Written consents were obtained from all
patients as well as the healthy subject (as a control for the

forearm measurement) in accordance with approval by the
University of Kentucky’s Institutional Review Board. In total,
eight free flaps were elevated on the seven patients. Patient 7
underwent a flap that failed (case 8) and another subsequent suc-
cessful flap (case 7). Details for patient demographic and
reconstruction information are listed in Table 1.

All free flaps were raised in a usual manner.38 After complete
elevation of the flap with only the main arterial pedicle and
venae comitantes remaining attached to its native blood supply,
an optical measurement using the ncDCS probe was performed
[Fig. 3(a)]. After this measurement, the arterial pedicle and
venae comitantes were ligated. The appropriate free flap was
inset to reconstruct the corresponding head and neck defects
and the venous and arterial pedicles were anastomosed to recipi-
ent vessels from the external carotid system and internal jugular
venous system. Each arterial pedicle was anastomosed in an
end-to-end configuration using 9-0 nylon sutures. Venous
pedicles were attached in either an end-to-end or an end-to-
side configuration using venous couplers.

Approximately 30 min after anastomosis of these vessels, a
second optical measurement was performed at the location of
the transferred tissue within the head and neck (oral cavity,
orbit, or neopharynx) [Fig. 3(b)]. In addition, multiple optical
measurements probing at the same location of the transferred
free tissue were performed on postoperative days 2, 4, and 7
in a similar fashion to the intraoperative measurement after anas-
tomosis [Fig. 3(c)].

Figure 3 illustrates the protocol of blood flow measurements
performed specifically for the reconstruction of an oral cavity
defect (P7). In each setting, optical measurements were taken
with the ncDCS optical probe directed toward the cutaneous sur-
face of the reconstructed tissue and were kept at the same work-
ing distance and spot throughout the protocol. During
intraoperative measurements, we took photos using a camera
to record the locations of the ncDCS source. Note that the
focused light source point (785 nm) on the tissue surface can
be recorded by the camera. For postoperative measurements,
we tried our best to align our probe to cover the same region
of the flap. DCS data collection time for each measurement
was approximately 2 min at a sampling rate of 1 Hz.

2.4 Data Analysis

The BFI data (2 min) obtained from the four S–D distances of
ncDCS during the operation at the intraoperative flap elevation
step and on the three postoperative days (i.e., days 2, 4, and 7)
were normalized to the averaged BFI baseline values (assigning
“1”) taken at ∼30 min after flap anastomosis, yielding rBF.
The 2-min rBF data were then averaged to generate mean
rBF values at four S–D distances, respectively. Finally, the

Table 1 Patient demographic and reconstruction information.

Patient number Age Gender Type of flap Successful flap?

P1 (case 1) 53 M RFFF Y

P2 (case 2) 65 M ALT Y

P3 (case 3) 54 M ALT Y

P4 (case 4) 46 F RFFF Y

P5 (case 5) 64 F RFFF Y

P6 (case 6) 74 M RFFF Y

P7 (case 7) 74 F RFFF Y

P7 (case 8) 74 F FFF N

Note: RFFF, radial forearm free flap; ALT, anterior lateral thigh free
flap; FFF, fibular free flap.

Fig. 3 The protocol for perioperative blood flow monitoring during free tissue transfer: (a) intraoperative
measurement on the elevated flap; (b) intraoperative measurement on the flap after anastomosis through
mouth cavity; (c) postoperative measurement on the transferred flap.
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mean� standard deviation of the rBF values at four S–D dis-
tances were calculated to represent the rBF value and corre-
sponding flow heterogeneity across the measured bulk flap
tissue. Statistical tests for averaged rBF differences at different
time points were performed using one-way repeated measures
ANOVA with main effects of the time period. p value <0.05
was considered significant for statistical results.

3 Results
Figure 4 shows relatively smaller changes in flow over seven
days measured from the liquid phantom [Figs. 4(a)–4(d)] and
healthy forearm [Figs. 4(e)–4(h)]. Flow variations over days
measured at all S–D pairs were fairly constant, indicating the
stability of ncDCS for noncontinuous measurements. By aver-
aging rBF (or relative flow in the phantom) values over the four
S–D separations, we found that the largest flow variations were
only 1.09� 0.23 from the phantom and 1.13� 0.24 from the
forearm (mean� standard deviation).

By contrast, remarkably larger rBF variations were observed
from all patients over the seven days. Figure 5 shows illustrative
results measured from one typical successful case (case 1) and
the failure case (case 8). Figure 6 shows the average results over
the seven successful cases; significant differences were found
among the flow responses obtained from the four separations
(one-way ANOVA test, p < 0.001). Although heterogeneous
flow responses at different S–D pairs existed due to the tissue
heterogeneity at different depths and regions of tissues, the
trends of blood flow alterations measured at different S–D sep-
arations were fairly consistent in each case (Fig. 5) and over
subjects (Fig. 6).

We then calculated bulk blood flow in the flap by averaging
DCS data obtained from the four S–D detectors, which

represented the overall flap hemodynamics better than that
from a local tissue volume detected by a single S–D pair.
Figure 7 shows these results from all eight free flap cases includ-
ing seven successes (cases 1 to 7) and one failure (case 8).
Larger variations in rBF were observed in all patients at all
measurement time points. In the group data of successful
cases, an initial decrease of the blood flow was observed intra-
operatively (from the elevation of free flap to the end of vessel
anastomosis), followed by a graduate flow recovery during the
following postoperative days. By contrast, rBF changes/recov-
eries in the unsuccessful flap during and post vessel anastomosis
were smaller than all successful flaps.

For better comparison, the averaged rBF values over the
seven successful flaps as compared to the unsuccessful flap
(case 8) are shown in Fig. 8. For the group data of seven

Fig. 4 The flow variations at the four different S–D separations (10.0,
15.7, 22.8, 30.0 mm) measured by ncDCS on the (a)–(d) liquid phan-
tom and (e)–(h) healthy forearm over seven days. The error bars re-
present the standard deviations over the 2-min measurements.

Fig. 5 The blood flow variations (rBF) measured at (a)–(d) four S–D
separations in one successful case (case 1) and (e)–(h) the unsuc-
cessful case during the operation and at postoperative days 2, 4, 7
(data are not available at postoperative day 7 for the unsuccessful
case). “E” represents the time point when the flap is raised. Day
“0” represents ∼30 min after flap anastomosis, which is used as
the baseline for normalization. Error bars represent standard devia-
tions over the 2-min time course data.

Fig. 6 Averaged rBF data measured at four S–D separations in all
successful cases over seven days. Error bars represent standard
errors over subjects.
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successful flaps, average intraoperative rBF at the time of
flap elevation was 1.71� 0.12 (mean� standard error).
Average postoperative rBF on postoperative days 2, 4, and 7
were 1.89� 0.15, 2.26� 0.13, and 2.43� 0.13 (mean
�standard error), respectively. The rBF variations over all
measurement time points were significant (one-way ANOVA
test, p < 0.001). By contrast, rBF values observed from the
unsuccessful flaps were 0.82, 1.14, and 1.34, respectively, at
the time of flap elevation and on postoperative days 2 and 4,
which were apparently lower than the successful cases.

4 Discussion and Conclusions
This study focused on evaluating the microvascular circulation
of free flaps both intraoperatively and postoperatively using a
novel ncDCS technique. Due to previous blood flow measure-
ments using DCS or ncDCS performed mostly in a continuous
manner,19,22,26,27,32–36 a challenge of this study was the quanti-
tative stability of the noncontinuous measurements over several
days. To facilitate a quantitative comparison during periopera-
tive monitoring period (7 days) in the protocol, rBF (or relative
flow) in the liquid phantom with a stable flow and in the healthy
forearm were monitored by ncDCS once a day over one week.
The results demonstrated fairly stable flow values during the
noncontinuous measurements (see Fig. 4). The mean flow var-
iations over the four S–D pairs during the measurement period
were less than 9% (phantom) and 13% (forearm), respectively.
By contrast, the results shown in Figs. 5–8 indicated signifi-
cantly larger flow variations in the reconstructed flaps over
the perioperative measurement period.

The perioperative variations of blood flow in the elevated
flaps meet the expectation of physiological responses to any sur-
gical insult. There is almost always an initial drop of blood flow

after vessel anastomosis as fresh flaps are ischemic.39 The post-
operative continuous increase in rBF results from the gradual
recovery of tissue injuries associated with the decrease of vas-
cular resistance in those elevated flaps.7 Depending of the
degree of ischemia and the amount of time before recovery
of blood flow, the flap will either die or recover.39

Interestingly, blood flow in the unsuccessful case did not
show either the initial drop of blood flow after vessel anastomo-
sis or the postoperative recovery. Although more cases need to
be performed, the observed perioperative differences in blood
flow between the unsuccessful and successful flaps (see
Figs. 7 and 8) demonstrate the potential of ncDCS measure-
ments to predict early free flap failures.

Our results are comparable to data available in literature
obtained using other technologies such as laser Doppler8 and
ultrasound Doppler.4–6 For example, intraoperative decreases
in blood flow after flap anastomosis6,8 and postoperative
increases/recoveries in blood flow/velocity4,5,8 were observed,
which are similar to our results (see Figs. 6 and 8). A previous
case study also reported lower blood flow after anastomosis in
an unsuccessful flap.6 In addition, preliminary results from a
pilot study showed the potential of blood flow measurements
using laser Doppler to predict flap failure before other clinical
signs.8

However, in contrast to ultrasound or laser Doppler technol-
ogy that focuses on evaluating blood flow/velocity in large ves-
sels or superficial tissues, the nature of ncDCS measurement is
to quantify blood flow changes in deep tissue microvascula-
ture.20,26 Since appropriate blood flow in tissue microvasculature
is the key for the survival of flaps,40,41 ncDCS may become a
useful tool with more sensitive measurements than the ultra-
sound/laser Doppler technology in monitoring tissue flap
vascularity.

The ncDCS technology is feasible for perioperative measure-
ments of tissue blood flow in all flaps included within this study,
despite the anatomical challenges that these flaps present intra-
operatively and postoperatively. These findings are encouraging
as this technology may offer surgeons the ability to assess tissue
blood flow in real time during the surgery, immediately after
vessel anastomosis, as well as in the early postoperative period
when flap compromise is the highest. A prominent advantage of
the ncDCS system is the use of its noncontact probe, which
allows measurements to be taken under nonsterile conditions.
It also avoids potential distortion in blood flow signals resulting
from contact-probe compression on the target tissue.
Furthermore, the noncontact probe is able to assess blood
flow over the reconstructed tissue without interfering with the
sterility of the surgical fields and the surgical setup.

Several challenges have arisen in the early implementation
and use of this device. The complex anatomical configurations
of head and neck reconstructions and patients’ limitations have
been successfully addressed. For example, flaps used to recon-
struct the oral cavity are difficult to assess fully. Adaptations by
measuring through the intact skin and submental tissues up to
the reconstruction tissue have shown promise (cases 5 and 7).
Practically, tissue blood flow can be assessed approximately up
to 15 mm below the skin surface with this current model of the
DCS system (i.e., half of the maximum S–D distance of 30 mm).
However, tissue congestion and edema may affect light penetra-
tion and blood flow measurement, which needs further evalua-
tions using tissue-simulated phantoms.42

Fig. 7 The rBF data measured from all flap cases (cases 1 to 8)
including the unsuccessful one (case 8) highlighted with large hexa-
grams. Note that data from the unsuccessful case (case 8) at day 7
are not available due to the subsequent reflap before that day. The
error bars (see Fig. 5) for individual cases are not shown for clarity.

Fig. 8 The comparison of rBF changes between the successful and
unsuccessful flaps. Averaged rBF values over the seven successful
cases during operation and on postoperative days 2, 4, 7 are pre-
sented as mean� standard errors (error bars represent the variations
over seven cases). rBF from the unsuccessful flap (case 8) was mea-
sured at the time of flap elevation and on postoperative days 2 and 4.
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In this study, tissue blood flow was measured by ncDCS
intraoperatively and postoperatively. During intraoperative mea-
surements, the patient was anesthetized and thus there was no
motion artifact in blood flow measurements. During postoper-
ative measurements, the subject was asked to keep still during
the short period of measurements (∼2 min). We did not find
obvious motion artifacts in postoperative measurements either.
Moreover, we averaged the 2-min data to reduce the variation
during measurements. In addition, the potential influence of
probing tissue curvature on ncDCS flow measurements has
been previously investigated by our group.27 The results
revealed that curvature resulted in slight underestimation in
BFI, but not in rBF.

Blood flow quantification in this study was performed by
ncDCS in a longitudinal time frame with limited point measure-
ments (i.e., four S–D pairs). We indeed observed the hetero-
geneity of blood flow responses at different depths and
regions due to the tissue heterogeneity (see Figs. 5 and 6).
Ideally, 3-D imaging of flap would provide complete informa-
tion for predicting the flap viability. However, our ncDCS sys-
tem has limited numbers of sources and detectors and thus
cannot generate a 3-D flow image. Recently, ncDCS has
been extended in our laboratory to the noncontact diffuse cor-
relation tomography (ncDCT)42 and speckle contrast diffuse
correlation tomography (scDCT).43 Both ncDCT and scDCT
have the potential to assess the spatial flow distributions in
deep flaps with 3-D tomographic information.

In conclusion, we were able to use the ncDCS in multiple and
complex head and neck reconstructions with different free tissue
transfers. ncDCS is a promising tool that may provide objective
information regarding flap viability in real-time intraoperatively
and in the early postoperative periods, thus allowing surgeons
early identification of those compromised and ischemic flaps
with the hope of salvaging them.
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